@graphty/algorithms
A comprehensive TypeScript graph algorithms library with 100+ algorithms optimized for browser environments and visualization applications.
Features
- TypeScript-first: Full type safety with comprehensive type definitions
- Browser-optimized: Designed to run efficiently in web browsers
- Modular: Import only the algorithms you need
- Comprehensive: 100+ graph algorithms including traversal, shortest paths, centrality, clustering, flow, matching, link prediction, and more
- Well-tested: Extensive test suite with high coverage
- Standards-compliant: Follows conventional commits and semantic versioning
Installation
npm install @graphty/algorithms
Quick Start
import { Graph, breadthFirstSearch, dijkstra } from '@graphty/algorithms';
// Create a new graph
const graph = new Graph();
// Add nodes and edges
graph.addNode('A');
graph.addNode('B');
graph.addNode('C');
graph.addEdge('A', 'B', 1); // source, target, weight
graph.addEdge('B', 'C', 2);
// Basic graph operations
console.log(graph.nodeCount); // 3
console.log(graph.totalEdgeCount); // 2
console.log(graph.hasEdge('A', 'B')); // true
// Run algorithms
const traversal = breadthFirstSearch(graph, 'A');
console.log(traversal.order); // ['A', 'B', 'C']
const shortestPaths = dijkstra(graph, 'A');
// Get distance to C
const pathToC = shortestPaths.get('C');
console.log(pathToC?.distance); // 3
API Reference
Graph Class
The core data structure for representing graphs.
class Graph {
constructor(config?: Partial<GraphConfig>)
}
Configuration Options
interface GraphConfig {
directed: boolean; // Default: false
allowSelfLoops: boolean; // Default: false
allowParallelEdges: boolean; // Default: false
}
Node Operations
// Add a node with optional data
graph.addNode(id: NodeId, data?: Record<string, unknown>): void
// Remove a node and all its edges
graph.removeNode(id: NodeId): boolean
// Check if a node exists
graph.hasNode(id: NodeId): boolean
// Get node details
graph.getNode(id: NodeId): Node | undefined
// Get all nodes
graph.nodes(): IterableIterator<Node>
Edge Operations
// Add an edge with optional weight and data
graph.addEdge(
source: NodeId,
target: NodeId,
weight?: number,
data?: Record<string, unknown>
): void
// Remove an edge
graph.removeEdge(source: NodeId, target: NodeId): boolean
// Check if an edge exists
graph.hasEdge(source: NodeId, target: NodeId): boolean
// Get edge details
graph.getEdge(source: NodeId, target: NodeId): Edge | undefined
// Get all edges
graph.edges(): IterableIterator<Edge>
Graph Properties
// Number of nodes
graph.nodeCount: number
// Total number of edges (counts both directions for undirected)
graph.totalEdgeCount: number
// Number of unique edges
graph.uniqueEdgeCount: number
// Check if graph is directed
graph.isDirected: boolean
Degree Operations
// Total degree (in + out for directed)
graph.degree(nodeId: NodeId): number
// In-degree (directed graphs only)
graph.inDegree(nodeId: NodeId): number
// Out-degree
graph.outDegree(nodeId: NodeId): number
Neighbor Operations
// Get neighboring nodes
graph.neighbors(nodeId: NodeId): IterableIterator<NodeId>
// Get incoming neighbors (directed graphs)
graph.inNeighbors(nodeId: NodeId): IterableIterator<NodeId>
// Get outgoing neighbors
graph.outNeighbors(nodeId: NodeId): IterableIterator<NodeId>
Utility Methods
// Create a deep copy
graph.clone(): Graph
// Clear all nodes and edges
graph.clear(): void
Traversal Algorithms
Breadth-First Search (BFS)
import { breadthFirstSearch, shortestPathBFS, singleSourceShortestPathBFS, isBipartite } from '@graphty/algorithms';
// Basic BFS traversal
const result = breadthFirstSearch(graph, startNode, {
maxDepth?: number, // Optional: limit traversal depth
visitCallback?: (node: NodeId, depth: number) => void
});
// Returns: TraversalResult { visited: Set<NodeId>, order: NodeId[], tree?: Map<NodeId, NodeId> }
// Find shortest path between two nodes (unweighted)
const path = shortestPathBFS(graph, source, target);
// Returns: NodeId[] | null
// Find all shortest paths from a source
const paths = singleSourceShortestPathBFS(graph, source);
// Returns: Map<NodeId, NodeId[]>
// Check if graph is bipartite
const bipartite = isBipartite(graph);
// Returns: { isBipartite: boolean, coloring?: Map<NodeId, number> }
Depth-First Search (DFS)
import { depthFirstSearch, topologicalSort, hasCycleDFS, findStronglyConnectedComponents } from '@graphty/algorithms';
// Basic DFS traversal
const result = depthFirstSearch(graph, startNode, {
previsitCallback?: (node: NodeId) => void,
postvisitCallback?: (node: NodeId) => void
});
// Returns: TraversalResult
// Topological sort (for DAGs)
const sorted = topologicalSort(graph);
// Returns: NodeId[] | null (null if cycle detected)
// Cycle detection
const hasCycle = hasCycleDFS(graph);
// Returns: boolean
// Find strongly connected components using DFS
const sccs = findStronglyConnectedComponents(graph);
// Returns: NodeId[][]
Shortest Path Algorithms
Dijkstra's Algorithm
import { dijkstra, dijkstraPath, singleSourceShortestPath, allPairsShortestPath } from '@graphty/algorithms';
// Single-source shortest paths
const result = dijkstra(graph, source, {
target?: NodeId // Optional: stop when target is reached
});
// Returns: Map<NodeId, ShortestPathResult>
// ShortestPathResult = { distance: number, path: NodeId[], predecessor: Map<NodeId, NodeId | null> }
// Get specific path
const path = dijkstraPath(graph, source, target);
// Returns: ShortestPathResult | null
// All shortest paths from source
const paths = singleSourceShortestPath(graph, source);
// Returns: Map<NodeId, ShortestPathResult>
// All pairs shortest paths
const allPairs = allPairsShortestPath(graph);
// Returns: Map<NodeId, Map<NodeId, ShortestPathResult>>
Bellman-Ford Algorithm
import { bellmanFord, bellmanFordPath, hasNegativeCycle } from '@graphty/algorithms';
// Single-source shortest paths (handles negative weights)
const result = bellmanFord(graph, source);
// Returns: BellmanFordResult {
// distances: Map<NodeId, number>,
// predecessors: Map<NodeId, NodeId | null>,
// hasNegativeCycle: boolean,
// negativeCycleNodes?: Set<NodeId>
// }
// Get specific path
const path = bellmanFordPath(graph, source, target);
// Returns: ShortestPathResult | null
// Check for negative cycles
const result = hasNegativeCycle(graph);
// Returns: BellmanFordResult with hasNegativeCycle boolean
Floyd-Warshall Algorithm
import { floydWarshall, floydWarshallPath, transitiveClosure } from '@graphty/algorithms';
// All pairs shortest paths
const result = floydWarshall(graph);
// Returns: { distances: Map<NodeId, Map<NodeId, number>>, next: Map<NodeId, Map<NodeId, NodeId | null>> }
// Get specific path between any pair
const path = floydWarshallPath(result, source, target);
// Returns: NodeId[] | null
// Compute transitive closure
const closure = transitiveClosure(graph);
// Returns: Map<NodeId, Set<NodeId>>
Centrality Algorithms
Degree Centrality
import { degreeCentrality, nodeDegreeCentrality } from '@graphty/algorithms';
// Calculate for all nodes
const centralities = degreeCentrality(graph, {
normalized?: boolean, // Default: false
weight?: string // Optional: edge property for weighted degree
});
// Returns: CentralityResult (Record<string, number>)
// Calculate for single node
const centrality = nodeDegreeCentrality(graph, nodeId, { normalized?: boolean });
// Returns: number
Betweenness Centrality
import { betweennessCentrality, nodeBetweennessCentrality, edgeBetweennessCentrality } from '@graphty/algorithms';
// Node betweenness for all nodes
const centralities = betweennessCentrality(graph, {
normalized?: boolean, // Default: false
weight?: string, // Optional: use weighted shortest paths
endpoints?: boolean // Default: false, include endpoints in paths
});
// Returns: CentralityResult (Record<string, number>)
// Single node betweenness
const centrality = nodeBetweennessCentrality(graph, nodeId, options);
// Returns: number
// Edge betweenness
const edgeCentralities = edgeBetweennessCentrality(graph, options);
// Returns: Map<string, number> (edge ID to centrality)
Closeness Centrality
import { closenessCentrality, nodeClosenessCentrality, weightedClosenessCentrality } from '@graphty/algorithms';
// Closeness for all nodes
const centralities = closenessCentrality(graph, {
normalized?: boolean // Default: false
});
// Returns: CentralityResult (Record<string, number>)
// Single node closeness
const centrality = nodeClosenessCentrality(graph, nodeId, { normalized?: boolean });
// Returns: number
// Weighted closeness
const centralities = weightedClosenessCentrality(graph, {
normalized?: boolean,
weight?: string // Edge property for weights
});
// Returns: CentralityResult (Record<string, number>)
PageRank
import { pageRank, personalizedPageRank, topPageRankNodes } from '@graphty/algorithms';
// Standard PageRank
const result = pageRank(graph, {
dampingFactor?: number, // Default: 0.85
maxIterations?: number, // Default: 100
tolerance?: number, // Default: 1e-6
initialRanks?: Record<string, number>,
personalization?: Record<string, number>
});
// Returns: { ranks: Record<string, number>, iterations: number, converged: boolean }
// Personalized PageRank (with bias)
const ranks = personalizedPageRank(graph, personalization, options);
// personalization: Map<NodeId, number> - restart probabilities
// Returns: CentralityResult (Record<string, number>)
// Get top N nodes by PageRank
const topNodes = topPageRankNodes(graph, n, options);
// Returns: Array<{ node: NodeId, rank: number }>
Eigenvector Centrality
import { eigenvectorCentrality, nodeEigenvectorCentrality } from '@graphty/algorithms';
// Calculate eigenvector centrality for all nodes
const centralities = eigenvectorCentrality(graph, {
maxIterations?: number, // Default: 100
tolerance?: number // Default: 1e-6
});
// Returns: CentralityResult (Record<string, number>)
// Single node eigenvector centrality
const centrality = nodeEigenvectorCentrality(graph, nodeId, options);
// Returns: number
Katz Centrality
import { katzCentrality, nodeKatzCentrality } from '@graphty/algorithms';
// Calculate Katz centrality for all nodes
const centralities = katzCentrality(graph, {
alpha?: number, // Attenuation factor (default: 0.1)
beta?: number, // Weight for direct connections (default: 1.0)
maxIterations?: number, // Default: 100
tolerance?: number, // Default: 1e-6
normalized?: boolean // Default: true
});
// Returns: CentralityResult (Record<string, number>)
// Single node Katz centrality
const centrality = nodeKatzCentrality(graph, nodeId, options);
// Returns: number
HITS Algorithm
import { hits, nodeHITS } from '@graphty/algorithms';
// Calculate hub and authority scores
const result = hits(graph, {
maxIterations?: number, // Default: 100
tolerance?: number // Default: 1e-6
});
// Returns: HITSResult { hubs: CentralityResult, authorities: CentralityResult }
// Single node HITS scores
const scores = nodeHITS(graph, nodeId, options);
// Returns: { hub: number, authority: number }
Connected Components
Basic Component Operations
import {
connectedComponents,
isConnected,
numberOfConnectedComponents,
largestConnectedComponent,
getConnectedComponent
} from '@graphty/algorithms';
// Find all components
const components = connectedComponents(graph);
// Returns: NodeId[][] (array of component arrays)
// Check if graph is connected
const connected = isConnected(graph);
// Returns: boolean
// Count components
const count = numberOfConnectedComponents(graph);
// Returns: number
// Get largest component
const largest = largestConnectedComponent(graph);
// Returns: NodeId[]
// Get component containing a specific node
const component = getConnectedComponent(graph, nodeId);
// Returns: Set<NodeId>
Strongly Connected Components
import {
stronglyConnectedComponents,
findStronglyConnectedComponents,
isStronglyConnected,
condensationGraph
} from '@graphty/algorithms';
// Find SCCs using Tarjan's algorithm
const sccs = stronglyConnectedComponents(graph);
// Returns: ComponentResult
// Alternative: using DFS
const sccs = findStronglyConnectedComponents(graph);
// Returns: NodeId[][]
// Check if directed graph is strongly connected
const stronglyConnected = isStronglyConnected(graph);
// Returns: boolean
// Create condensation graph (DAG of SCCs)
const condensation = condensationGraph(graph);
// Returns: { graph: Graph, componentMap: Map<NodeId, number> }
// Alternative DFS-based connected components
const components = connectedComponentsDFS(graph);
// Returns: ComponentResult
Weakly Connected Components
import { weaklyConnectedComponents, isWeaklyConnected } from '@graphty/algorithms';
// Find WCCs (ignoring edge direction)
const wccs = weaklyConnectedComponents(graph);
// Returns: ComponentResult
// Check if directed graph is weakly connected
const weaklyConnected = isWeaklyConnected(graph);
// Returns: boolean
Data Structures
Priority Queue
Min-heap implementation used internally by algorithms.
import { PriorityQueue } from '@graphty/algorithms';
const pq = new PriorityQueue<T>((a, b) => a.priority - b.priority);
pq.enqueue(item);
pq.dequeue();
pq.peek();
pq.isEmpty();
pq.size;
pq.clear();
Union-Find (Disjoint Set)
Efficient data structure for tracking connected components.
import { UnionFind } from '@graphty/algorithms';
const uf = new UnionFind<T>();
uf.makeSet(item);
uf.find(item);
uf.union(item1, item2);
uf.connected(item1, item2);
uf.getSetSize(item);
uf.numberOfSets;
Minimum Spanning Tree Algorithms
Kruskal's Algorithm
import { kruskalMST, minimumSpanningTree } from '@graphty/algorithms';
// Find MST using Kruskal's algorithm
const mst = kruskalMST(graph);
// Returns: { edges: Edge[], weight: number }
// Alternative alias
const mst = minimumSpanningTree(graph);
Prim's Algorithm
import { primMST } from '@graphty/algorithms';
// Find MST using Prim's algorithm
const mst = primMST(graph, startNode?);
// Returns: { edges: Edge[], weight: number }
Community Detection Algorithms
Louvain Method
import { louvain } from '@graphty/algorithms';
// Detect communities using Louvain method
const communities = louvain(graph, {
resolution?: number, // Default: 1.0
randomSeed?: number
});
// Returns: { communities: Map<NodeId, number>, modularity: number }
Leiden Algorithm
import { leiden } from '@graphty/algorithms';
// Improved community detection
const communities = leiden(graph, {
resolution?: number, // Default: 1.0
iterations?: number, // Default: 10
randomSeed?: number
});
// Returns: { communities: Map<NodeId, number>, modularity: number }
Label Propagation
import { labelPropagation, labelPropagationAsync, labelPropagationSemiSupervised } from '@graphty/algorithms';
// Basic label propagation
const labels = labelPropagation(graph, {
maxIterations?: number // Default: 100
});
// Returns: Map<NodeId, number>
// Asynchronous version
const labels = labelPropagationAsync(graph, options);
// Semi-supervised with seed communities
const labels = labelPropagationSemiSupervised(graph, seedLabels, options);
Girvan-Newman Algorithm
import { girvanNewman } from '@graphty/algorithms';
// Edge betweenness based community detection
const dendrogram = girvanNewman(graph, {
targetCommunities?: number // Stop at this many communities
});
// Returns: { levels: Array<{ modularity: number, communities: NodeId[][] }> }
Pathfinding Algorithms
A* Algorithm
import { astar, astarWithDetails, heuristics } from '@graphty/algorithms';
// A* pathfinding with heuristic
const path = astar(graph, start, goal, {
heuristic: heuristics.euclidean, // or manhattan, chebyshev, zero
weight?: (edge: Edge) => number
});
// Returns: { path: NodeId[], cost: number } | null
// A* with search details
const result = astarWithDetails(graph, start, goal, options);
// Returns: { path: NodeId[], cost: number, explored: Set<NodeId>, parent: Map<NodeId, NodeId> } | null
Flow Algorithms
Maximum Flow
import { fordFulkerson, edmondsKarp } from '@graphty/algorithms';
// Ford-Fulkerson using DFS
const flow = fordFulkerson(graph, source, sink, {
capacityKey?: string // Edge property for capacity
});
// Returns: { maxFlow: number, flowGraph: Map<NodeId, Map<NodeId, number>> }
// Edmonds-Karp using BFS (better complexity)
const flow = edmondsKarp(graph, source, sink, options);
// Create bipartite flow network
const flowNetwork = createBipartiteFlowNetwork(leftNodes, rightNodes, edges, capacities?);
// Returns: FlowNetwork
Minimum Cut
import { minSTCut, stoerWagner, kargerMinCut } from '@graphty/algorithms';
// Min s-t cut using max flow
const cut = minSTCut(graph, source, sink);
// Returns: { cutValue: number, sourcePartition: Set<NodeId>, sinkPartition: Set<NodeId> }
// Global minimum cut (Stoer-Wagner)
const cut = stoerWagner(graph);
// Returns: { cutValue: number, partition1: Set<NodeId>, partition2: Set<NodeId> }
// Randomized min cut (Karger)
const cut = kargerMinCut(graph, iterations?);
// Returns: { cutValue: number, partition1: Set<NodeId>, partition2: Set<NodeId> }
Clustering Algorithms
Hierarchical Clustering
import { hierarchicalClustering, cutDendrogram, cutDendrogramKClusters } from '@graphty/algorithms';
// Agglomerative clustering
const result = hierarchicalClustering(graph, linkage);
// graph: Map<NodeId, Set<NodeId>>
// linkage: 'single' | 'complete' | 'average' | 'ward' (default: 'single')
// Returns: HierarchicalClusteringResult { root: ClusterNode, dendrogram: ClusterNode[], clusters: Map<number, Set<NodeId>[]> }
// Cut at specific height
const clusters = cutDendrogram(result.root, height);
// Returns: Set<NodeId>[]
// Get exactly k clusters
const clusters = cutDendrogramKClusters(result.root, k);
// Returns: Set<NodeId>[]
K-Core Decomposition
import { kCoreDecomposition, getKCore, kTruss, degeneracyOrdering } from '@graphty/algorithms';
// Find all k-cores
const result = kCoreDecomposition(graph);
// graph: Map<NodeId, Set<NodeId>>
// Returns: KCoreResult { cores: Map<number, Set<NodeId>>, coreness: Map<NodeId, number>, maxCore: number }
// Extract specific k-core subgraph
const kCore = getKCore(graph, k);
// Returns: Set<NodeId>
// Find k-truss (triangular cores)
const truss = kTruss(graph, k);
// Returns: Set<string> (edge strings)
// Degeneracy ordering
const ordering = degeneracyOrdering(graph);
// Returns: NodeId[]
Spectral Clustering
import { spectralClustering } from '@graphty/algorithms';
// Spectral clustering using graph Laplacian
const result = spectralClustering(graph, {
k: number, // Number of clusters
laplacianType?: 'unnormalized' | 'normalized' | 'randomWalk', // Default: 'normalized'
maxIterations?: number, // Default: 100
tolerance?: number // Default: 1e-4
});
// Returns: SpectralClusteringResult { communities: NodeId[][], clusterAssignments: Map<NodeId, number> }
Markov Clustering (MCL)
import { markovClustering } from '@graphty/algorithms';
// MCL algorithm for network clustering
const result = markovClustering(graph, {
expansion?: number, // Expansion parameter (default: 2)
inflation?: number, // Inflation parameter (default: 2)
maxIterations?: number, // Default: 100
tolerance?: number // Default: 1e-6
});
// Returns: MCLResult { communities: NodeId[][], attractors: Set<NodeId>, iterations: number, converged: boolean }
Matching Algorithms
Bipartite Matching
import { maximumBipartiteMatching, greedyBipartiteMatching, bipartitePartition } from '@graphty/algorithms';
// Maximum bipartite matching (Hungarian algorithm)
const matching = maximumBipartiteMatching(graph, {
leftNodes?: Set<NodeId>, // Optional: specify left partition
rightNodes?: Set<NodeId>, // Optional: specify right partition
});
// Returns: BipartiteMatchingResult { matching: Map<NodeId, NodeId>, size: number }
// Greedy bipartite matching (faster, approximate)
const matching = greedyBipartiteMatching(graph, options);
// Partition graph into bipartite sets
const partition = bipartitePartition(graph);
// Returns: { left: Set<NodeId>, right: Set<NodeId> } | null
Graph Isomorphism
import { isGraphIsomorphic, findAllIsomorphisms } from '@graphty/algorithms';
// Check if two graphs are isomorphic
const result = isGraphIsomorphic(graph1, graph2, {
nodeMatch?: (node1: NodeId, node2: NodeId, g1: Graph, g2: Graph) => boolean,
edgeMatch?: (edge1: [NodeId, NodeId], edge2: [NodeId, NodeId], g1: Graph, g2: Graph) => boolean,
findAllMappings?: boolean // Find all possible isomorphisms
});
// Returns: IsomorphismResult { isIsomorphic: boolean, mapping?: Map<NodeId, NodeId> }
// Find all isomorphism mappings
const mappings = findAllIsomorphisms(graph1, graph2, options);
// Returns: Array<Map<NodeId, NodeId>>
Link Prediction Algorithms
Common Neighbors
import { commonNeighborsScore, commonNeighborsPrediction, commonNeighborsForPairs } from '@graphty/algorithms';
// Score for a specific pair
const score = commonNeighborsScore(graph, node1, node2);
// Returns: number
// Predict links for all non-connected pairs
const predictions = commonNeighborsPrediction(graph, {
directed?: boolean, // Consider direction
includeExisting?: boolean, // Include existing edges
topK?: number // Return only top K predictions
});
// Returns: LinkPredictionScore[]
// Score multiple specific pairs
const scores = commonNeighborsForPairs(graph, pairs, options);
// Returns: LinkPredictionScore[]
// Evaluate prediction performance
const evaluation = evaluateCommonNeighbors(graph, testEdges);
// Returns: { precision, recall, f1Score }
// Get top candidates for a node
const candidates = getTopCandidatesForNode(graph, nodeId, { topK?: number });
// Returns: LinkPredictionScore[]
Adamic-Adar Index
import { adamicAdarScore, adamicAdarPrediction, adamicAdarForPairs } from '@graphty/algorithms';
// Adamic-Adar score for a pair (weighted by neighbor degrees)
const score = adamicAdarScore(graph, node1, node2);
// Returns: number
// Predict links using Adamic-Adar
const predictions = adamicAdarPrediction(graph, {
directed?: boolean,
includeExisting?: boolean,
topK?: number
});
// Returns: LinkPredictionScore[]
// Score multiple pairs
const scores = adamicAdarForPairs(graph, pairs, options);
// Returns: LinkPredictionScore[]
// Compare Adamic-Adar with Common Neighbors
const comparison = compareAdamicAdarWithCommonNeighbors(graph, pairs);
// Returns: Array<{ source, target, adamicAdar, commonNeighbors }>
// Evaluate prediction performance
const evaluation = evaluateAdamicAdar(graph, testEdges);
// Returns: { precision, recall, f1Score }
// Get top candidates for a node
const candidates = getTopAdamicAdarCandidatesForNode(graph, nodeId, { topK?: number });
// Returns: LinkPredictionScore[]
Research Algorithms (2023-2025)
Cutting-edge graph algorithms based on recent research.
SynC - Synergistic Deep Graph Clustering
import { syncClustering } from '@graphty/algorithms';
// Deep learning based clustering
const result = syncClustering(graph, {
k: number, // Number of clusters
maxIterations?: number, // Default: 100
learningRate?: number, // Default: 0.01
hiddenDim?: number, // Default: 64
randomSeed?: number
});
// Returns: SynCResult {
// communities: NodeId[][],
// clusterAssignments: Map<NodeId, number>,
// embeddings: Map<NodeId, number[]>,
// iterations: number,
// converged: boolean
// }
TeraHAC - Scalable Hierarchical Agglomerative Clustering
import { teraHAC } from '@graphty/algorithms';
// Scalable hierarchical clustering
const result = teraHAC(graph, {
linkage?: 'single' | 'complete' | 'average', // Default: 'average'
k?: number, // Target number of clusters
threshold?: number, // Distance threshold for merging
sampleSize?: number, // Default: 1000
randomSeed?: number
});
// Returns: TeraHACResult {
// root: TeraHACClusterNode,
// dendrogram: TeraHACClusterNode[],
// clusters: NodeId[][],
// mergeDistances: number[]
// }
GRSBM - Greedy Recursive Spectral Bisection with Modularity
import { grsbm } from '@graphty/algorithms';
// Explainable community detection
const result = grsbm(graph, {
minClusterSize?: number, // Default: 5
maxDepth?: number, // Default: 10
modularityThreshold?: number, // Default: 0.1
explainClusters?: boolean // Default: true
});
// Returns: GRSBMResult {
// clusters: GRSBMCluster[], // Each cluster has id, nodes, modularity, explanation
// hierarchy: Map<number, number[]>,
// totalModularity: number
// }
Algorithm Categories Summary
Available Algorithms by Category:
- Traversal: BFS, DFS, Topological Sort, Cycle Detection, Bipartite Check
- Shortest Path: Dijkstra, Bellman-Ford, Floyd-Warshall, A*
- Centrality: Degree, Betweenness, Closeness, PageRank, Eigenvector, Katz, HITS
- Components: Connected, Strongly Connected, Weakly Connected, Condensation Graph
- Community Detection: Louvain, Leiden, Label Propagation, Girvan-Newman
- Clustering: Hierarchical, K-Core, Spectral, Markov (MCL)
- Minimum Spanning Tree: Kruskal, Prim
- Network Flow: Ford-Fulkerson, Edmonds-Karp, Min-Cut (Stoer-Wagner, Karger)
- Matching: Bipartite Matching, Graph Isomorphism
- Link Prediction: Common Neighbors, Adamic-Adar
- Research Algorithms: SynC, TeraHAC, GRSBM
Examples
The library includes comprehensive examples demonstrating each algorithm. Find them in the examples directory:
Basic Algorithms
- BFS Traversal - Breadth-first search and shortest paths
- DFS Traversal - Depth-first search and applications
- Dijkstra's Algorithm - Weighted shortest paths
- Bellman-Ford - Shortest paths with negative weights
- Floyd-Warshall - All pairs shortest paths
Centrality Measures
- Degree Centrality - Node importance by connections
- Betweenness Centrality - Bridge nodes
- Closeness Centrality - Central nodes
- PageRank - Node ranking algorithm
- Eigenvector Centrality - Influence from important nodes
- Katz Centrality - Weighted path counting
- HITS Algorithm - Hub and authority scores
Graph Structure
- Connected Components - Find graph components
- Kruskal's MST - Minimum spanning tree
- Prim's MST - Alternative MST algorithm
Community Detection
- Louvain Method - Modularity-based communities
- Leiden Algorithm - Improved Louvain
- Label Propagation - Fast community detection
- Girvan-Newman - Hierarchical communities
Clustering
- Hierarchical Clustering - Graph clustering
- K-Core Decomposition - Core analysis
- Spectral Clustering - Eigenvalue-based clustering
- MCL Clustering - Markov clustering
Matching
- Bipartite Matching - Job assignment, dating apps
- Graph Isomorphism - Structural equivalence
Link Prediction
- Common Neighbors - Friend suggestions
- Adamic-Adar - Weighted predictions
Advanced Algorithms
- A* Pathfinding - Heuristic pathfinding
- Flow Algorithms - Maximum flow and applications
- Ford-Fulkerson Flow - Maximum flow implementation
- Minimum Cut - Graph partitioning
Research Algorithms
- SynC Clustering - Deep learning based clustering
- TeraHAC - Scalable hierarchical clustering
- GRSBM - Explainable community detection
Advanced Usage Examples
Working with Weighted Graphs
const graph = new Graph();
// Add weighted edges
graph.addEdge('A', 'B', 5);
graph.addEdge('B', 'C', 3);
graph.addEdge('A', 'C', 10);
// Find shortest path considering weights
const result = dijkstra(graph, 'A');
const pathToC = dijkstraPath(graph, 'A', 'C');
console.log(pathToC); // { path: ['A', 'B', 'C'], distance: 8 }
Directed Graphs
const directedGraph = new Graph({ directed: true });
directedGraph.addEdge('A', 'B');
directedGraph.addEdge('B', 'C');
directedGraph.addEdge('C', 'A');
// Check for cycles
console.log(hasCycleDFS(directedGraph)); // true
// Find strongly connected components
const sccs = stronglyConnectedComponents(directedGraph);
console.log(sccs.components); // [['A', 'B', 'C']]
Network Analysis
// Identify important nodes
const graph = createSocialNetwork(); // Your graph
// Find influencers (high PageRank)
const influencers = topPageRankNodes(graph, 10);
// Find bridges (high betweenness)
const bridgers = Array.from(betweennessCentrality(graph).entries())
.sort((a, b) => b[1] - a[1])
.slice(0, 10);
// Find communities (connected components)
const communities = connectedComponents(graph);
console.log(`Found ${communities.components.length} communities`);
Custom Edge Properties
const graph = new Graph();
// Add edges with custom data
graph.addEdge('A', 'B', 1, {
type: 'road',
distance: 100,
traffic: 'heavy'
});
// Use custom weight in algorithms
const result = dijkstra(graph, 'A', {
weightKey: 'distance' // Use 'distance' property as weight
});
Graph Visualization Preparation
// Prepare data for visualization
const graph = loadGraph();
// Calculate layout metrics
const centralities = degreeCentrality(graph, { normalized: true });
const ranks = pageRank(graph);
// Export for visualization
const nodes = Array.from(graph.nodes()).map(node => ({
id: node.id,
data: node.data,
size: centralities.get(node.id) || 0,
importance: ranks.get(node.id) || 0
}));
const edges = Array.from(graph.edges()).map(edge => ({
source: edge.source,
target: edge.target,
weight: edge.weight || 1,
data: edge.data
}));
Type Definitions
Core Types
type NodeId = string | number;
interface Node {
id: NodeId;
data?: Record<string, unknown>;
}
interface Edge {
source: NodeId;
target: NodeId;
weight?: number;
id?: string;
data?: Record<string, unknown>;
}
Algorithm Result Types
interface TraversalResult {
visited: Set<NodeId>;
order: NodeId[];
tree?: Map<NodeId, NodeId>;
}
interface ShortestPathResult {
path: NodeId[];
distance: number;
predecessor: NodeId | null;
}
interface BellmanFordResult {
distances: Map<NodeId, number>;
predecessors: Map<NodeId, NodeId | null>;
hasNegativeCycle: boolean;
negativeCycleNodes?: Set<NodeId>;
}
type CentralityResult = Record<string, number>;
interface PageRankResult {
ranks: Record<string, number>;
iterations: number;
converged: boolean;
}
interface CommunityResult {
communities: Map<NodeId, number>;
modularity: number;
}
interface ComponentResult {
components: NodeId[][];
componentMap: Map<NodeId, number>;
}
interface HITSResult {
hubs: CentralityResult;
authorities: CentralityResult;
}
interface SpectralClusteringResult {
communities: NodeId[][];
clusterAssignments: Map<NodeId, number>;
}
interface MCLResult {
communities: NodeId[][];
attractors: Set<NodeId>;
iterations: number;
converged: boolean;
}
interface BipartiteMatchingResult {
matching: Map<NodeId, NodeId>;
size: number;
}
interface LinkPredictionScore {
source: NodeId;
target: NodeId;
score: number;
}
interface HierarchicalClusteringResult<T> {
root: ClusterNode<T>;
dendrogram: ClusterNode<T>[];
clusters: Map<number, Set<T>[]>;
}
interface KCoreResult<T> {
cores: Map<number, Set<T>>;
coreness: Map<T, number>;
maxCore: number;
}
interface IsomorphismResult {
isIsomorphic: boolean;
mapping?: Map<NodeId, NodeId>;
}
interface SynCResult {
communities: NodeId[][];
clusterAssignments: Map<NodeId, number>;
embeddings: Map<NodeId, number[]>;
iterations: number;
converged: boolean;
}
interface TeraHACResult {
root: TeraHACClusterNode;
dendrogram: TeraHACClusterNode[];
clusters: NodeId[][];
mergeDistances: number[];
}
interface GRSBMResult {
clusters: GRSBMCluster[];
hierarchy: Map<number, number[]>;
totalModularity: number;
}
Performance Considerations
- Graph Representation: Uses adjacency lists for O(1) neighbor access
- Algorithm Complexity:
- BFS/DFS: O(V + E)
- Dijkstra: O((V + E) log V) with binary heap
- Bellman-Ford: O(VE)
- Floyd-Warshall: O(V³)
- PageRank: O(k(V + E)) where k is iterations
- Connected Components: O(V + E)
- Kruskal's MST: O(E log E)
- Prim's MST: O((V + E) log V)
- A*: O((V + E) log V) - depends on heuristic quality
- Ford-Fulkerson: O(E * f) where f is max flow
- Edmonds-Karp: O(VE²)
- Louvain/Leiden: O(n log n) average case
- Hierarchical Clustering: O(n² log n)
- SynC: O(kni) where k is clusters, n is nodes, i is iterations
- TeraHAC: O(n log n) with sampling
- GRSBM: O(m log n) where m is edges
- Memory Usage: O(V + E) for graph storage
- Browser Optimization: Algorithms use iterative approaches where possible to avoid stack overflow
Development
Prerequisites
- Node.js 18+
- npm 9+
Setup
# Clone the repository
git clone https://github.com/graphty-org/algorithms.git
cd algorithms
# Install dependencies
npm install
# Set up git hooks
npm run prepare
Scripts
# Development
npm run dev # Watch mode compilation
npm run build # Build the library
npm run typecheck # Type checking
# Testing
npm run test # Run tests in watch mode
npm run test:run # Run tests once
npm run test:coverage # Generate coverage report
npm run test:browser # Run browser tests
# Code Quality
npm run lint # Run ESLint
npm run lint:fix # Fix ESLint issues
npm run lint:pkg # Check for unused dependencies
# Git
npm run commit # Conventional commit helper
# HTML Examples
npm run examples:html # Run interactive HTML examples
npm run build:gh-pages # Build for GitHub Pages deployment
Development Server
The project includes interactive HTML examples demonstrating each algorithm. To run them locally:
Copy the environment configuration:
cp .env.example .env
Configure the server (optional): Edit
.env
to set your preferred host and port:# Server host (defaults to true for network exposure) HOST=localhost # For local-only access # HOST=0.0.0.0 # For network access # HOST=my.server.com # Custom domain # Server port (defaults to 9000) PORT=9000 # Must be between 9000-9099
Start the development server:
npm run examples:html
Open your browser to
http://localhost:9000
(or your configured host/port)
The HTML examples provide:
- Interactive visualizations for each algorithm
- Step-by-step execution with play/pause controls
- Multiple graph types for testing
- Real-time parameter adjustment
- Educational information about complexity and use cases
- Mobile debugging console (Eruda) for testing on mobile devices
Project Structure
src/
├── core/ # Core graph data structures
├── algorithms/ # Algorithm implementations
│ ├── traversal/ # BFS, DFS
│ ├── shortest-path/ # Dijkstra, Bellman-Ford
│ ├── centrality/ # Degree, Betweenness, PageRank
│ └── components/ # Connected components
├── data-structures/ # Supporting data structures
├── types/ # TypeScript type definitions
└── utils/ # Utility functions
examples/
├── html/ # Interactive HTML examples
│ ├── shared/ # Shared utilities and styles
│ └── algorithms/ # Algorithm-specific examples
test/
├── unit/ # Unit tests
├── browser/ # Browser-specific tests
└── helpers/ # Test utilities
Contributing
We welcome contributions! Please see our Contributing Guide for details.
Commit Convention
This project uses Conventional Commits:
feat(scope): add new algorithm
fix(scope): resolve edge case in traversal
docs(scope): update API documentation
test(scope): add coverage for centrality measures
License
MIT © Adam Powers
Related Projects
- @graphty/layout - Graph layout algorithms
- @graphty/graphty-element - 3D graph visualization web component